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ABSTRACT

This study concerns the determination of the contact stresses and contact region around bolt holes and the

bolt load distribution in single- and double-lap joints of composite laminates with arbitrarily located bolts

under general mechanical loading conditions and uniform temperature change. The unknown contact

stress distribution and contact region between the bolt and laminates and the interaction among the bolts

require the bolt load distribution, as well as the contact stresses, to be as part of the solution. The present

method is based on the complex potential theory and the variational formulation in order to account for

bolt stiffness, bolt-hole clearance, and finite geometry of the composite laminates.

1. INTRODUCTION

Bolted joints provide the primary means for transferring load among composite components in the

construction of aircraft and space structures. The stress state in a bolted joint is dependent primarily on

the dimensions of the planar geometry, loading conditions, degree of material anisotropy, bolt-hole

clearance, bolt flexibility, and friction between the laminates. Also, aircraft and space vehicles traveling at

supersonic and hypersonic speeds can experience high temperature excursions. The influence of thermal

expansions can be significant and may differ significantly among the materials for the bolts and

laminates. As a result, high thermal stresses may develop as the temperature increases and may alter the

bolt load distribution. Therefore, accurate determination of the stresses in bolted laminates under both

mechanical and thermal loading is essential for reliable strength evaluation and failure prediction.

A considerable amount of work on the behavior of composite joints with a single bolt exists in the

literature. These studies investigated the stress distribution around a pin-loaded hole in laminated

composites based on either finite element analysis or analytical methods. Since the contact stress

distribution and the contact region are not known a priori, a majority of the models did not directly

impose the boundary conditions appropriate for modeling the contact and non-contact regions between

the bolt and the boundary of the hole. These models usually assumed a cosinusoidal bearing stress

distribution or zero radial displacements over the contact region of the hole boundary. In the case of

multi-bolt joints, the commonly accepted approach is to first determine the load distribution among the

bolts in order to identify the critical (most highly loaded) bolt for a subsequent single-bolt analysis for

local stress distribution. However, this type of analysis disregards the interaction among the bolts located

in close proximity to each other. In order to eliminate these shortcomings, Madenci et al. (1998)

developed a method for single-lap joints based on the boundary collocation technique. Their method

determines the contact stresses and contact region, as well as the bolt load distribution, as part of the
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solution procedure. However, this method fails to provide converged solutions consistently depending on

the number of bolts and their location in relation to each other or to the free boundaries. A detailed

validation and demonstration of their approach, as well as an extensive review of previous analyses, were

reported in detail by Madenci et al. (1997).

In the literature, there are essentially no direct analyses of double-lap bolted joints for solid laminates

under general loading conditions and appropriate boundary conditions arising from contact phenomenon.

Madenci et al. (1999) extended their boundary collocation technique for single-lap joints to consider

double-lap joints and thermal loading. This method provided converged results for particular

configurations, but also suffered from consistent convergence arising from the explicit partitioning of the

domain.

Xiong and Poon (1994) introduced an analytical approach utilizing a variational formulation in

conjunction with the complex potential theory to single- and double-lap joints with many bolts. Their

approach considers each laminate of the joint separately. The coupling of the laminates is achieved

through bolt displacements, which are permitted only in the direction of loading. In their two-stage

analysis, the first stage provides the local deformation along the hole boundaries of one of the laminates

subjected to the external boundary conditions and the prescribed cosinusoidal bearing stress representing

the bolt load at each hole boundary. The local deformations and the bolt deflections are imposed as

displacement constraints in the subsequent second stage to determine the contact stresses (bolt loads) and

the contact region in the second laminate. Subsequently, these fastener loads are imposed as prescribed

cosinusoidal bearing stress for the first stage of the analysis, and the iterative process continues until the

constraint conditions are satisfied.

This study presents an analysis method for determining the bolt load distribution in single- and

double-lap joints while accounting for the contact phenomenon and the interaction among the bolts

explicitly under bearing and by-pass loading with or without thermal loading. It is an extension of the

analysis introduced by Xiong and Poon (1994) and eliminates the requirement of a two-stage analysis

and the associated iterative process. The resulting equations are solved in a coupled manner, leading to

the contact stresses, contact region, and bolt load distribution.

2. PROBLEM STATEMENT

The geometry of a bolted single- and double-lap joint with composite laminates is described in Fig. 1. The

joint can be subjected to a combination of bearing, by-pass and shear loads, and a uniform temperature

change. Each laminate of the single- and double-lap joints, joined with L number of bolts, is subjected to

traction components, _k) (cr=x,y) along the _(k) segment of the external boundary of each region
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Fig. 1. Geometric description of single- and double-lap joints with many bolts.
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denoted by F (k). The section of the external boundary subjected to displacement constraints, ti(pk)

(p= n,s), is denoted by _(k). The subscripts "n" and "s" denote directions outward normal and

tangent to the boundary, respectively. Each region with an area of A (k) can be under uniform

temperature change, T (k) . The thickness of the laminates (regions) is denoted by h (k) . The contact

region between the gth bolt and the hole boundary in the k th region is denoted by I_(kO . The sub- or

superscripts "(k)" and "(g)" refer to the regions (laminates) and bolts, respectively. Their ranges are

specified by k = 1..... K and g = 1..... L, with K and L being the total number of regions (laminates) and

bolts, respectively. As illustrated in Fig. 2, the hole radius, a t , which is slightly larger than the bolt

radius, Re , leads to a clearance of d e . The hole and bolt radii remain the same for each region. As shown

in Fig. 2, the center of each hole, located at (Xe,Yg), coincides with the origin of the Cartesian

coordinates (x e, Ye) •

( /dV 'X" 0

Y g-th bolt

Fig. 2. Position of a bolt before and after the load is executed.

As shown in Fig. 3, the free-body diagram of each component of a lap joint, the unknown boundary

traction components, ,_(k), arise from the deformation of the boundary given by ?(pk)=(U(pk)_ff(pk))

along a portion of the external boundary, _(k). The unknown traction component in the outward normal

direction, ,_kc), arises from the deformation of the contact zone between the gth bolt and the hole

boundary in the k th region laminate. This contact zone deformation is expressed by _3(kO=

U(nk) -fi}lkC)(A_))-6_kO along the contact region denoted by 1_(kO . The extent of the contact region

denoted by f.(kc) is dependent on the bolt displacement, fi}_kt)(A_f)), deformation of the hole boundary,
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Fig. 3. Free-body diagram of each component in a bolted single-lap joint.

u(nk) , and the gap, d(k 0 . Because of the absence of friction between the bolt and the laminate, the

tangential component of the bolt displacement, _k*), and the traction vector, ,_s(k*) , vanish, i.e. fi_kc) = 0

and ,_s(k*) = 0. As shown in Fig. 4, at the point of initial contact (prior to any deformation of hole

boundary), the gap between the hole boundary and the bolt (distance PP') in the k _ region is defined by

PP" = 8(*kt ) = 6g [1 - cos(O - 0")1 (l)
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Fig. 4. The gap between the bolt and hole boundary immediately before and after the load is exerted.
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in which O* specifies the line of action, m, and dt is the clearance. The extent of the contact region,

_,(kO, is defined by the angles t?a and 0 B . The flexible bolts experience deflections given by

A(O T={A(O A(t') ,(g) ,(t)
xl ' x2'ZXyl 'ray2 } for a single-lap joint (2a)

A(O T ,.(O A(O ,(O A(O A(O A(O} for a double-lap joint (2b)
=lZaxl ' x2'/-Xx3' yl ' y2' y3

with &xi"(O and Ayi(O (i = 1, K) representing the bolt deflection components at the ith point along the

length of the g th bolt along the x- and y-directions, respectively.

The material properties of each laminate are represented by the matrix A (k) relating the stress

• (k) _(k)
resultants, 1vail, to strain resultants, *-aft, with c_,fl = x, y, in the form

(l) - A A22 or = (3)
Eyy N (/) A(/)

where A(ijk) are the components of the in-plane stiffness matrix A (k) of the k th region. The strain

components arising from temperature change, *eS_, are expressed as

(*e_),*e(yky),*y_))=(ct_),a(yky),_))T (k) (4)

where the coefficients c{x_), o_ ), and a_ ) represent the thermal expansions of the k°_ region with

respect to the global (X,Y) coordinate system. The corresponding thermal stress resultants are defined as

*^i(k)

• N_)t [ All A12 AI6 / (k)/T(k)=tA,z A22 A=6/ 1,  yl"

In matrix form, this relationship is expressed as

•N(k) = A(k) ,_(k)

in which *e (k) =ot(k)T (k) with IX(k)T i_(k) _(k) _(k)l
, =ttXxx ,tXyy ,tXxy I.

(5)

(6)
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The stiffness matrix of the bolts, b (O , is given by

 y01 (7)

whose coefficients are determined by modeling the bolt as a beam under concentrated forces. The explicit

expressions for bolt stiffness for a single- and double-lap joint, as well as the general lap configurations,

are derived in Appendix A.

These angles, the contact stresses, the components of bolt displacement, and the forces exerted by the

bolts are the unknowns to be determined as part of the solution. Unless indicated otherwise, the subscripts

a and fl vary as cr, fl = x,y, representing the (x, y)global coordinates. The subscript /9 varies as

p = n, s, representing the directions normal and tangent to the boundary, as shown in Fig. 1. Also, only

repeated subscripts imply summation.

3. SOLUTION METHOD

The solution method is based on the variational formulation in conjunction with the complex potential

theory. The governing equations are derived by requiring the first variation of the total potential energy,

arising from thermal and mechanical loads, to vanish. The in-plane equilibrium equations in each region

are satisfied exactly by employing complex potential functions in the form suggested by Lekhnitskii

(1968). However, each of the bolt equilibrium equations and the boundary conditions are satisfied by

minimizing the total potential energy.

3.1. Governing Equations

The total potential energy for K regions connected with L number of bolts in the absence of friction

between the laminates and between the laminates and the bolts along the contact region under mechanical

and thermal loading can be expressed as

K L K L K K

u(k) -- -(e)
k =1 g=l k =1 g=l k =1 k =1

The strain energy of the k t_ laminate, U (k), is given by

u(k) =--1 1" a1(k)c(k),4a 1" r,l(k) *c(k) .ca (9)J " afl _al3 "'_ - J "aft "_a,8 "_2
A(k) A(k)
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with its first variation as derived in Appendix B,

A(k) F(k)

+ i ,,(k)x, (k) b'u_ ) dr,p _,,p dF+Z I *t_)

f.(k) g=! i_(kg)

in which or,fl = x, y and/9 = n, s. The strain energy of the g thbolt, B (O , is given by

with its first variation

B( t) = 1 (g) (g) (_)
-_A i b/) Aj with

6B (C)= b(t') Aj(g)SA i(g)

(10)

i,j=l,2K (11)

(12)

The potential of the reaction forces, ,,_ke) and ,_(k) (p = n,s), arising from the contact between the bolt

and the hole boundary and the applied displacement constraints along the external boundary are denoted

by ff.(k.e) and ff,(k), respectively. They are expressed in the form

in which

j(kg) ={10

contact between the k th plate and gth bolt

no contact between the k th plate and gth bolt

and

(13)

(14)

(15)

_(k) i A(k)'fu(k)-t7_)} dr with= p [ p p=n,s
f.(_)

The potential of the externally applied tractions, _k), denoted by if(k) is expressed as

_(k) f 7(k), (k)._r=- "a "a '-- with cr=x,y
vJ

F(k)

in which _k) and u_ ) represent the applied traction and displacement components in the x- and y-

directions, respectively. Their first variations are obtained as
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_(kg)

+ J"j("),_")au(:).r- f
f,(tO _A i , "

and

(16)

and

61_'(k) I o_'(k)[ (k)= o,_i9 _Up -_i_)}dF+ I ,a,b_(k)_OUp(k).ra. (17)

°¢W(k)=- f T_(k)SU(cek)dI"

The first variation of the total potential energy can be obtained as

K _ M(k) x, (k).laa__-'It_(g)A(g) K f j(kg)_kt)_fi(nkg)dF [(5Ig=-- Z j ,'_ _:,fl,-',,_ct _'_" /.]"ij _j --Z aAlg)

'='L 7 J
K K L

+Z I {*t(k'--{(k'}Su(k)dF+ZZ _ (*t(k'+j(kg'_k") 8u(nk)dF

k=1F(k) k =1g=l_.(kg)

K L K K

+ZL I *t_k'su_k'dF+Z I{ *'(pk,+A(k,} 8u_,dF+Z _ {u_'- jS,/, d_'__(k, F

k=l g=l_.(kg) k=l _,(k) k=l f.(k)

K L
^(kg) (g) * ^(kg)+ZZ I J("' -.n .r

k=l g=! _(kg)

(18)

(19)

Noting that 8u_ ) , 6u_ ) , 6fin(k), 6fi_k), 6Al t') , and A;Jv..n(kg) are arbitrary independent quantities and

requiring the first variation of the total potential energy to vanish lead to the equilibrium equations for the

laminates and bolts as

N(k) =0 onA (k)

(g) (f) ;(kO_(kO Ofi(kO
b,;._,j -Z ., ,,,_ _ar=o

k=t OAi
l_(kO

(20)

i,j=l,2K (21)
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Their associated boundary conditions are obtained as

{*t(ak)--i-(k)}=O onF(k)

*t_k)=0 onf'(ke)

{*/(k) +)_(k)}= 0 on_.(k)

{u("-fi_'} = 0 on _'("

where a, fl=x,y; p=n,s; k =I,K; and g=l ..... L.

(22a)

(22b)

(22c)

(22d)

(22e)

(22f)

3.2. Total Potential Energy

The strain energy expression given in Eq. (9) can be rewritten in terms of displacement components as

1

A (k) A (k)

Its integration by parts yields

f I((k) ,_*r,r(k)], (k)-] dAu(k)= l/r,1(k) ,_*_,(k) ]'(k)'4a+l _, t_,Nail-" "a,B]"a J-'_" afl,fl -'_ " afl,fl J"a "_ 2
A(k) ,fl

(23)

(24)

Under uniform temperature distribution and applying Gauss' theorem, it reduces to

1 _ , (k) u(ak)dz+l f [_,(k) ,._*_,,(k)\ (k) (k)_.= ]nil ua altVcg_,l_ V"aft - _" " aBU_k) -_a(k ) Zr(i )
(25)

This expression can be further simplified by invoking the stress resultants, Nail,B, that satisfy the

equilibrium equations, Nail,C/= 0, given by Eq. (20), as

U(k) l f {_t(k) ,_*_l(k)\ (k), (k)ar
=- _ - ]_/_ "a"-2r _ )_"a/_ "- "a/_

(26)
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The explicit expressions for the stress resultants and displacement components satisfying both the

equilibrium equations and the compatibility conditions are given in Appendix C.

Finally, the total potential energy expression given in Eq. (19) is reduced to a form, free of area

integrals, as

L
K 1 f [aAk) .,*.,(k)h (k) (k).__ l x--_(e).(g).(g)

J --_ lV_alnn UG alt--_o., ix. ix.
rc= Z2 t ''aft " I " 2 _=1 'J ' J

k=! F(k) =

K L K

+ZZ I '_<>_n_'<'{"<"+,- -°"_<>(_7>>+ai'_<>}_r-Z
k =! g=l ¢-,(kg)

N

+:gI -.,o
k =l 1P(k)

I 7-(k), (k)dF

k=l p(k)

(27)

with G, fl = x, y; p = n, s; k = 1..... K; and g = 1..... L. It can be rewritten in matrix form as

,n-=_ f (N(k)-2*N(k')Tn(k)u(k>dF+l--_-'b(g)A('e)+_-" I _.(k)r_.(k'dF

k=l - r_k) 2 g=l k=l p(k)

K L

+22 I
k =l t'=l _.(kg) k=l p(k)

(28)

where

_:(k) = u(k) - 6(k) ; _:(kg) = u(k) - fi(kg) (A(g)) - _5*(ke) (29a)

=]U x ,Uy ] , -[ n s j ,
(29b)

(29c)

_Z(k)r =]cnr-(k),Cs:(k)J;] fi(ke)r = {_(nkg),0}; _{kg) T

and the matrix of unit normals, n (k) , is expressed as

Fn_ ) 0n (k) = n(yk)

i (k) n(k)Lny

= {ai*kt,),O} (29d)

(29e)

As given by Equation (3), the unknown bolt displacements are contained in vector A (g), and matrix b (O

represents the bolt stiffness.
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The constraint condition given by Equation (22e),

E(pk) =u(_ ) -_) =0

is rewritten in vector form as

in which

with p = n, s (30)

fi(k) =u,(k) _fi,(k) =0 (31)

if(k) = T(k) u(k) (32)

with T (k) representing the transformation matrix between the (x, y) and (n, s) coordinate systems. The

displacement vectors u '(k) and u (k) are defined in the (n,s)and (x,y) coordinate systems, respectively,

u (k)T = {Ux(k),U(y', } (34)

Substituting for u (k) from Equation (B31) into Equation (32) yields

u'(k) = T (k) u(k)Ta(k)

leading to

_(k) = T(k) u(k)Ta(k) _fi,(k)

The unknown traction vector, _(k), defined in Eq. (29c) can be assumed as

J

j=0

where the matrix Pj and vector of unknown coefficients ._,_.k) are defined as

= and A]PJ pj

with pj being the j%order Legendre polynomial. In matrix notation, this equation becomes

(35)

(36)

(37)

(38)
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where

_,(k) = p_(_) (39)

P=[Po Pi P2 "'" Pj] and /_ (k)T ={A__, /_T, XT,2 ...,/_T} (40)

From Eqs. (36) and (40), the boundary integral of the product _.(k)T_:(k) that appears in the expression for

the total potential energy is obtained as

where

and

_.(k)r_(k)dF= _ X(k)rP r T (k) U(k)r a(k)dr- _ /_(k)rprT(k)6(k)dr

= X(k):r_(k) a(k) _ X(kf_(k)

_(k) = j" pTT(k) u(k)TdF

f.(k)

_(k) = f pTT(k)fi(k)dF

f,(k)

(41)

(42)

(43)

The constraint condition given by Equation (22f),

_(kt) (k) ,;(kt)tA(_)_=Un ---n _j _+6_ke) =O

is rewritten in vector form as

The bolt displacement vector,

deflections in the form

/:(kg) = u,(k) _ fi,(ke) (A(e)) + 6(,kO = 0

fi,(k_) at the contact

(44)

(45)

region can be expressed in terms of the bolt

fi,(kC) = (_(kg)A(t') (46)

are defined asin which the matrix (_(kc) and the vector A(g)
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-sin0k/

0
cosOkt ]Irl(Zl - Zk )

o L o
rl(z2 - zk) "'" rl(zK - zk)

0 ." 0

0 0 ""

?7(Zt--Z k) 17(Zz-Z k) ...

(47)

with l_( z i - z k ) defined as

and

{_ifi=k_](zi - Zk ) = if i _ k
(i = 1..... K)

A(e)T={a(_) AJz) .,. ^(e) (_) (o ^(t)"_xK Ayl Ay2 "'" _yK J

With substitutions from Eq. (35) and (46), the expression for _(ke) becomes

fi(ke) = T(k) U(k)Ta(k) _ (_(ke)A(e) + li(,ke)

The unknown traction vector, _(kg) defined in Eq. (29c) can be assumed as

I

/Y) =ZvAy )
i=0

^ (ke) are defined aswhere the matrix F i and vector of unknown coefficients A i

[_ 0 1 and A_kelr t niri = F/ =lA(kC)'O}

(48)

(49)

(50)

(51)

in which Fi is an orthogonal

endpoints, i.e.,

trigonometric function satisfying

Fi(s = So) = F/(s = sl) = 0

These functions are formulated as

the condition of zero stress at the

F/(s) = sinlbr(O(s)-O(s°))] with/: 1,,

L(o(s,)-o(s0))J

(52)

(53)

in which O(so) and O(s l) represent the beginning and end angles of the contact region. These angles are

measured with respect to the global X-axis, and any point in the contact region is identified by the angle

O(s) .
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The expression for the unknown traction vector at the contact region can be rewritten as

_(ke) = F_(ke) (54)

where

F=[F 0 F1 F2 .-- FI] and ,_(kOr={._,(0kO,.,_,Ike) ..... ._kO} (55)

From Eqs. (49) and (54), the boundary integral of the product _,(k)Tfi(k) that appears in the

expression for the total potential energy is obtained as

J" _,(ke)Tfi(ke)d[" = j" _,(kOTFTT (k) U (k)T a (k) dF- j" A(kOTFT(_(ke)A (g) dF

f.(k_) f.(kO f.(kO

+ _ X(kC)TFT,_kg)dr

f.(ke)

(56)

or

_(kE)T_z(kt)d_, = A(ke) _(kg) a(k) _ A(ke)Vfglkg)A(e) + A (keffg(0kO (57)

where

_(ke) = f F T T(k) u(k)TdF

i_(ke)

gl kg) = _ FTG(kg)dF
f.(kg)

f,(ke)

Also, the potential energy of the traction vector, i-(k) , acting on _(k) is expressed as

(58)

where

(59)

(60)

-((k)7"u(k)dF: _ u(k)T-f(k)dr= _ a (k)T U (k)¥(k)arF:a(k)r_ (61)
F(k) r(k) p(k)
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_ = [ U (k) i-(k)dF (62)

Substituting from Eqs. (B31), (41), (57), and (61) for the appropriate terms in Eq. (28), the expression for

the total potential energy is obtained in matrix form as

K K

=lZa(k)TH(k)a(k)_Z.h(k)a(k ) l L_r +-ZA(OTb(OA (0
2 k=1 k=1 2 g=l

+ _._ _(k)T_(k ) X

k=l k=l

K L

k =1 (=l k =1 (=1 k =1 g=l

K

-ZVa(k 
k=|

(63)

in which

H(k) = 1
-_ J" S(k)n(k)U(k)TdF (64)

F (k)

= [ *N(k)Tn(k)u(k)TdF (65)*h (k)

F (k)

where S (k) and U(k)are given by Eqs. (B31) and (B32). The total potential energy in Eq. (63) is

compacted to its final form

1 I

= ±aTHa -*ha + ±bA +/_,TCa -/_kTf + A(_a - AT_I A + fikTg0 - f a
2 2

(66)

in which the vectors and matrices are defined by

a T ={a (1)T, a (2)T ..... a (K)T } (67a)

A T ={A (I)T, A (2)T, ..., A(L)T } (67b)

_T = {/_(I) T, A (2)T, ..., A (K)T) (67c)

.....
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and

and

_-T = {_'(1) T ' _-(2) T ..... f "(K)T }

*hT={*h(I) T ' *h(2) T ..... *h(K)T }

_T = {_(I) T , _(2)T , ..., _(K) T }

f_T= {f_(01)r ' I_(02)T..... i_(0K,r} with f_(0k)T

n

b_

-H d)

b(1)

H(2)

b (2)

_(2)

_(2)

°,

H (K)

°.

b (L)

_(K)

with_(k)r =I_(kbr _(k2) T ,., c(kL) r ]

(67e)

(67f)

(67g)

(67h)

(68a)

(68b)

(68c)

(68d)
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with _glk) =
_I k2)

(68e)

The minimization of the total potential energy, i.e., 67r = 0, leads to the following equilibrium equations

n o U

0 b 0

o o

o

=

o°l J[go J

(69)

Solving Eq. (69) for the unknown vectors permits the calculation of the stress and displacement

components in each laminate, bolt deflections, and forces exerted by the bolts• Because the angles 0 A

and 0 B defining the contact region are unknown, these equations are solved for their assumed values

until convergence is achieved through an iterative scheme• This procedure is explained in Appendix D.

4. NUMERICAL RESULTS

Three different types of load transfer through bolted joints are considered in order to validate the present

analysis. The first configuration is a pin-loaded square plate considered by Ireman et al. (1993). The

second configuration is a single-lap joint with four bolts investigated by Xiong and Poon (1994). The

third configuration is a joint of dissimilar bars with a single bolt under different uniform temperature

changes analyzed previously by Gatewood (1957). Then, the capability of the present analysis is

demonstrated by considering two different double-lap joint configurations: one with three bolts under

mechanical loading only, uniform temperature change only, and their combination, and the other with

seven bolts under mechanical loading only.

A pin-loaded square plate was investigated through detailed finite element analysis by Ireman et al.

(1993). As shown in Fig. 5, the geometry of the plate is defined by the parameters W = 24 mm, D = 6

mm, 6 = 0.021 mm, and thickness t = 3.046 mm. Three different sets of laminate material properties

considered in the analysis are given in Table 1. The bolt was assumed to be rigid and the applied load, P,

was taken as 5483 N. In the present analysis, the number of terms, N, retained in the series representation

of the complex potential functions, _(rkO(z_ kC)) and (o_k()(z_k_)), is taken as 80. The number of terms

retained in the series representation of the reaction tractions, _.(k)and _.(kt), denoted by J and 1,
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Fig. 5. Pin-loaded plate configuration.

Table 1. Material properties of laminates.

Case E_,GPa E_,,Gpa G_.,GPa Vxv
A 99.2 35.5 8.5 0.24

B 35.5 99.2 8.5 0.08

C 51.5 51.5 19.3 0.33

respectively, is taken as 24. Figures 6-8 shows the favorable comparison of the normalized radial and

tangential stresses obtained through the finite element analysis reported by Ireman et al. (1993) with those

of the present calculations. The radial and tangential stress components are normalized with respect to the

applied bearing stress, -P/(d t), and the applied stress, P/(W t), respectively.

The geometry and loading conditions of a single-lap joint of aluminum and composite plates with

four bolts are shown in Fig. 9. As shown in this figure, the geometry of the joint is defined by the

dimensions of h 0) =0.31in, h (2) =0.117 in, D = 0.3125 in, W= 3.125 in, s = 1.25 in, e = 0.9375 in, g =

2.75 in. There exists no bolt-hole clearance, 6 = 0. The composite lay-up is [(45°/0°/-45°/0°)2/0°/90°] s

with lamina properties of E L =18.5x106 psi, ET =l.9x106 psi, GLT =0.85×106 psi, and VLT =0.3.

In obtaining the present predictions, the series representations of the functions are truncated at

N = 30 and J = I =5. Although the entire geometry of the lap joint is considered in the present

analysis, only the predictions for the bolt loads exerted by Bolt 1 and Bolt 3 are presented due to the

presence of symmetry. As compared in Table 2, the present analysis predictions are in remarkable

agreement with those calculated by Xiong and Poon (1994).

The geometry of the steel and aluminum plates connected with a single bolt is shown in Fig. 10. Each

plate is subjected to a different uniform temperature change. The bolt is assumed to be rigid, with no

clearance between the bolt and the bolt holes. The material properties and the temperature change for

each bar is presented in Table 3. In the present analysis, the bars are assumed as narrow plates whose
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Table 2. Bolt load distribution.

Present Analysis Xiong and Poon (1994)
P1/P 0.23 0.23

P3/P 0.27 0.27

h o)

i i i' t am I
]1(2)

W

YT _X

e s

Fig. 10. Steel and Aluminum plates connected with a single bolt under thermal loading.
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Table 3. Material i_roperties and temperature chan es.

Material E, psi v or,/ °F AT, °F

Plate 1 Steel 3 × 10 7 0.3 6.5 x 10.6 500

Plate 2 Aluminum 10 7 0.3 12 × 10.6 100

geometry is specified by W = 0.5 in, e = 3.5 in, s = 0.5, D = 0.2 in, and h (l) = h (2) = 0.06 in. The present

analysis predictions are obtained by considering N = 30 and J = I = 5 in the series representations of the

functions. The present analysis predicts the force exerted by the bolt to be 442 lb. The bolt force

obtained by Gatewood (1957) according to the strength of materials approach is 461 lb. The difference of

4.1% in bolt load prediction is possibly due to the fact that the strength of materials approach does not

account for the presence of the bolt hole.

The geometry of a double-lap joint with three bolts is shown in Fig. 11. The geometry of the plates

all having the same dimensions are described by W= 50 mm, s = 25 mm, e = 12.5 mm, D = 6 mm, h = 5

mm, h (I) = h (2) = 4 mm, and 5 = 0.005 mm. The material properties for the steel and aluminum plates,

respectively, are: Es = 200 GPa, Vs = 0.3, Ors= 11.7 x 10 -6/°F, EA = 70 GPa, VA= 0.3, and erA= 23.0 x 10 -6

/°F. All of the bolts in this joint are assumed to be rigid. For the first case of mechanical loading only,

the applied tensile stress, o-*, is 200 N/mm. In the second loading case, the plates are under uniform

temperature change only. Accordingly, the steel plates are free from temperature change, ATs = 0°C,

while the aluminum plate is subject to ATA = 125°C. The third case represents a combination of the

mechanical and thermal loads, with o'*= 200 N/mm, ATs = 0°C, and ATA = 125°C. The number of terms

retained in the series representation of the functions in the present analysis is specified by

N=30 and J=I=5.

Due to the presence of symmetry, only the results concerning Bolt 2 and Bolt 3 are presented in Figs.

12-14 and Table 4. The tangential and radial stresses around the bolt holes, shown in Figs. 12-14,

correspond to mechanical loading, uniform temperature change, and their combination, respectively. As

observed in these figures, the location and extent of the contact region, as well as the magnitudes of the

bearing stresses, change significantly. The bolt load distributions for each of these loading cases are

given in Table 4. As expected, the force exerted by Bolt 2 alters its direction when the nature of the

loading changes from mechanical to thermal. This behavior is caused by the thermal expansion of the

aluminum plate constrained with three bolts. Consequently, under thermal loading, the bolt forces with

their directions toward the middle of the plate resist the thermal expansion of the plate.
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Table 4. Bolt load distribution in a double-lap joint of steel plates and an aluminum
)late with three bolts.

Bolt load, N

Mechanical Loading Thermal Loading Combined Loading

Bolt # 2 Fx -2313.99 ........ 6906.94 4383.20
F r -54.74 6597.65 6372.89

Bolt#3 Fx -5374.18 -13815.46 -18769.19
F_ 0.00 0.00 0.00

Under combined mechanical and thermal loading, the forces exerted by Bolt 2 and Bolt 3 are

approximately equal to the sum of the forces acting on these bolts in the cases of mechanical and thermal

loads. This shows the effect of the non-linearity arising from the contact analysis.

A complex double-lap joint with seven bolts, shown in Fig. 15, is subjected to a tensile loading. The

outer plates are steel and the inner plate is a composite. The bolt-hole clearance is specified as 1% of the

hole diameter. The composite plate is made of graphite and fiberglass with material properties

E x =4.7x106 psi, ET =4.75x106 psi, GLT =l.2x106 psi, and Vxy =0.24. Steel properties for the

plates and bolts are taken as E = 30.106 psi and v = 0.3. The applied load is 70,000 Ibs, corresponding

to o'*= 10,000 psi.

In the calculation of the results, the number of terms retained in the series representation of the

functions in the present analysis is specified by N =30 and J = I =7. Because of the presence of

symmetry, only the stress distributions around Bolts 1, 2, 4, and 5 are shown in Fig. 16. The forces

exerted by these bolts are given in Table 5. As expected, the bolts in the first row share more of the load

than the bolts in the second row. Also, the outer bolts share more of the load than the inner bolts.

Accordingly, Bolt 1 and Bolt 3 are the most highly loaded bolts for this configuration.

5. CONCLUSIONS

In this study, a new approach based on a complex potential theory in conjunction with a variational

formulation has been introduced for the thermo-elastic contact analysis of a general bolted-joint

configuration containing multiple laminates joined by multiple bolts. The total potential energy of the

joint is formulated by using a solution in the form of a complex potential series that automatically

satisfies the stress equilibrium equations and compatibility conditions, thus avoiding the necessity to

perform area integrations and resulting in boundary integral expressions for the strain energy of the

laminates. The total potential energy also includes the strain energy of the bolts based on a shear

deformable beam theory.
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Table 5. Bolt load distribution in a double-lap joint of
steel plates and a composite laminate with
seven bolts.

Bolt Fx, lb F_,, lb
1 -1181.5 11983.7

2 0.0 11340.9

4 2.5 9947.8

5 238.3 7427.6

F¥/ Fappaed
0.1712

0.1620

0.1421

0.1061

In order to capture high gradient variations of stresses near the free or bolted holes, the stress field is

defined as the superposition of complex potential series originating from each hole. Hence, not only are

continuous stress and displacement fields obtained but the modeling of the entire joint is also simplified

considerably. By only entering boundary information, hole size and locations, and the number of terms to

be used in complex and other series, the solution provides all the stress, displacement, and contact force

distributions at any point in the joint.

Contact between the bolts and the laminates is established by enforcing displacement continuity along

the contact region between the bolts and the plates. This is established by incorporating the work done by

the unknown contact forces over the contact displacements into the total potential energy expression. The

contact displacements are defined by constraint equations that take into account the gap between the bolts

and plates. The contact forces are assumed in the form of trigonometric series that satisfy stress-free

conditions at the ends of the contact regions.

Since the contact regions are unknown a priori, an iterative scheme is adopted in order to determine

the beginning and end angles of the contact regions. Starting with an initial guess, the system matrix is

generated to solve for unknown plate and bolt displacements and contact forces simultaneously. The

simultaneous determination of bolt displacements and contact forces, along with the plate displacements,

is a unique feature of the present formulation. A new guess is then obtained by monitoring the stress

distribution along the contact regions. The iterative scheme is continued until a configuration for contact

regions is reached where all the contact forces become compressive.

The validation problems show excellent agreement of the present formulation against those reported

by other investigators. The pin-loaded panel in the first validation problem provides a comparison of

contact angles and contact force distribution. For all laminate configurations, remarkable agreement is

obtained between the present analysis and the refined finite element solution. In the case of a single-lap

configuration subjected to thermal loading, the strength of material solution is available. As expected, the

present analysis achieves the right bolt load and compares well with the strength of material solution if
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full contact is assumed around the bolt. In the case of a single- and a double-lap joint containing multiple

holes, the present analysis captures the correct load distribution shared by each bolt.

The versatility of the present formulation has been demonstrated by solving a double-lap joint

configuration containing three bolts and two laminates with different material properties, and the joint is

subjected to thermal, mechanical, and thermo-mechanical loadings. All of these cases are solved

assuming variable contact regions. Therefore, the rule of superposition is invalid for these problems since

the contact regions are changing. This can be clearly observed in the tabulated results where the

summation of the bolt load distribution arising from thermal and mechanical loads is significantly

different from those arising from the combined loading.
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APPENDIX A

The bolt stiffness matrix is derived based on the Timoshenko's zeroth-order shear deformable beam

theory. The cross-section of a bolt connecting K laminates (regions) is shown in Fig. A1. The bolt

number is denoted by g and the regions are numbered from bottom to top in sequential order. The bolt

has a circular uniform cross-section, Ac, moment of inertia, I t , and Young's and shear moduli, Eg and

Gg, respectively. The nuts at the ends of the bolt are assumed to represent clamped boundary conditions,

thus preventing rotations but creating reaction moments at the ends of the bolt.

The bolt is subjected to forces arising from the contact between the bolt and the laminates. Because

of the variation in laminate thickness and stiffness, these forces exerted by the laminates vary through the

length of the bolt. Because of the variable contact forces along the length of the bolt, the large in-plane

bolt stiffness compared to those of the laminates and the small ratio of the bolt diameter to its length, the

most suitable and accurate representation of the bolt can be achieved by discretizing the bolt into small

Timoshenko beam elements connected at nodal points, as shown in Fig. AI.
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Fig. AI. A close view of the section in the vicinity of a bolt, and the discretization
of the bolt into Timoshenko beam elements.
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The bolt discretization is based on the most effective locations of the contact forces. Thus, two of the

nodes are selected at the top and bottom ends of the bolt in order to obtain the largest in-plane bolt

deflection. The contact forces exerted on the bolt by the top and bottom laminates are assigned to these

end nodal points. The remaining nodal points are chosen at the intersections of mid-planes of the inner

laminates and the bolt longitudinal axis, as shown in Fig. AI. Hence, the contact forces exerted on the

bolt by the inner laminates are assigned to these intermediate nodal points. The nodal deflections and

rotations along the length of the bolt permit the determination of the bolt deflection at any point along the

bolt by utilizing interpolation functions.

Because the bolt material is homogeneous and isotropic and its cross-section is circular, the moment

of inertia of the bolt is homogeneous on the (x, y) plane. Hence, there exists no coupling between the

deformations of the bolt on the (x, z) and (y, z) planes, leading to the uncoupled stiffness matrices of the

bolt associated with the (x, z) and (y, z)planes. However, their forms are identical since the stiffness

properties of the bolt are homogeneous on the(x,y) plane. Therefore, the derivation of the stiffness

matrix associated with the (x, z) plane applies to the stiffness matrix associated with the (y, z) plane.

As shown in Fig. AI, the bolt connecting K laminates is modeled by (K-l) number of beam

"(g)=A(g)(zi) and a rotation,elements and K nodes. Each node is assigned a deflection, Axi

¢)(x_) = O(xg) (zi), with the subscript i = 1, K representing the node numbers. The positive directions of the

deflections and rotations are shown in Fig. AI. Also, the length of each beam element is denoted by L_-,

with i = 1, K. Based on the geometry and material properties of the /' th bolt, the strain energy arising

from the bolt deformation associated with the (x, z) plane can be written as

K-1

i=1

The strain energy of each element is expressed as

U (ig) -_ _Eglg IGgAfg(y(ij))2dz

(AI)

(A2)

in which the strains _.(if) and a/(ig) are based on Timoshenko's zeroth-order shear deformation theory,
_ZZ, /ZX

and they are defined as

.(ig) d2A(xiO and v (ig) dA(ig) (ie)
l_zz = dz 2 dz

(A3)

In Eq. (A2), Afc denotes the corrected area of the bolt and is defined as
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Af ( = c2Ae (A4)

in which c2 represents the shear correction factor, which is a correction to the strain energy due to

uniform transverse shear deformations.

The displacement and rotation field of the bolt is represented by piecewise continuous interpolation

functions. These functions are defined individually over each element as

• (c)

A(x/g)(Z)= HI(S)A(f ) + H2(s)A(g(_+l ) + H3(s) dA__xi' + H4(s )
dZ

(O --(_)
O(xig)(Z)= N1 (S)0x(ff)+ N2(S)Ox(i+l) + N3(s)(#)cm

d^(g)
'-'x(i+l)

dz
(A5a)

(A5b)

where the subscript m denotes the mid-point of the element. The variable s = z - zi is a local coordinate

system for the i thelement. The interpolation functions Hi(s) (j = 1.... 4) represent the cubic Hermitian

polynomials defined as

3s 2 2s 3

Hi(s) = 1---_ -2+ L_ (A6a)

3s 2 2s 3

H2(s) = L2 _ (A6b)

2s 2 s 3
H3(s) = s --- + -- (A6c)

s 2 s3
H4(s) = --- +-- (A6d)

Also, the functions Nj (s) (j = I .... 3) represent the Lagrangian shape functions defined as

(A7a)

(A7b)

(A7c)

In order to express A_ e) and (k_xic) in terms of the nodal unknowns defined at the end points of the

element, two successive steps are performed. In the first step, constraint of uniform shearing strain along

the beam element is enforced into the kinematic field, thus leading to
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dy(_ O d2A(x/g) d0(ig) =0

dz dz 2 dz
(A8)

Substituting from Eqs. (A3) and (A5) into Eq. (A8) and grouping the terms as coefficients of z ° and z,

this constraint equation produces two algebraic equations of the form

(()
4 dA(f ) 2 dAxi+_ 6 A(g) 6 ,(g) 1 _(e) 4

.... +-_. _'xi +-_. ,'x(i+1) L_.+ + 7 zax(i+l) 3 ._(g) .,(0 (A9a)In. dz I.i dz Iff x, _'Jm,

"(t) '4A(g) /-_ +712 A(g)x(i+l) ' 4 .,(g)
6 dAxi +6 _xi+l __12A(x{)4,(g)

-rT_ri +7_'x(i+1) ---

(e) ,,IdThese two equations are then solved for dk(f)ldz and dAx(i+_j z as

• (g)
dAxi 1 (_) 1 .(g)

-- _Axi +_za/(i+l)

da(g)
_x(i+l)

&

5 _,(o _l_(e) 2_(0
+ -_Pxi 6 _'x(i+l) - 3 "rxm

1 (g) 1 .(g) 1 a)(t) 5 _,(g) 2_(g)
---'_. Axi +--_. Zax(i+l) -Trxi +-_qJx(i+l) - 3"rxm

8 ,_(g) (A9b)

/__ "r'xm

(A10a)

(A10b)

Substituting from Eq. (A10) into Eq. (A5a) and rearranging the terms, the in-plane deflection

component, A (i{) is obtained as

A(ig) =
1-14) xt _ x(i+l)2L/ t'_2. 2

s s 2 2s3/,_(g ) ( 2s 2s 2 as 3 (g)

+ 6 2/,i +3/_ ) "rx(i+l) +_ -7+ l_q _.)_xm

(All)

Thus, the total number of unknowns in the expressions for the deflection and rotation is reduced from 7 to

5. Substituting from Eqs. (AI 1) and (A5) for AJ g) and ()(xif) in the strain definitions, Eq. (A3), and

carrying out the integrations in Eq. (A2), analytically result in the following strain energy expression for

the ith element of the gth bolt in matrix form

where

• r_(ig)]V[ - h(iO

u(j ) '?,,,1 I 11
= _/,..(_c)/ l=(ie)r

L_lx2 J I_°12 b(2_),I (ig)Ij[q_2 0

(A12)
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q(iOT=_'A(O A(0 0x([) ,_(0 ],
xl [ xi x(i+l) V'x(i+l)J (A13a)

(Al3b)

Gt Af _ Gf Aft

GrAft GrAft

/" �"-

GrAft GrAft

GtAfg GrAft

/" /".

bl iff)T ={2GrAft -2GrAft

Gt Aft G t Aft

6 6

GrAft GrAft

6 6

7Eglt GtAftLi E(I t GeAftI_
+

3L/ 36 3L/ 36

Etl t GeAftl-i 7EtI t GtAftLi
÷ q

3/"- 36 3/,- 36

(Al3c)

8Etl t GtAftLi 8EtI t GtAftl-t+ ÷ . (A13d)J3/" 9 3L/ 9

b_i2t) - 16Etlg + 4atAf gLi
3L i 9

(Al3e)

A further reduction of the total number of unknowns from 5 to 4 is achieved in the next step. The

._(t)
slope defined at the mid-point of the beam, _'xm, can be condensed out of the strain energy expression,

Eq. (A12), by employing the static condensation procedure. In the absence of nodal forces at the mid-

,,(if) yields the equilibriumpoint of the element, the first variation of the strain energy with respect to '_x2

equation at the mid-point as

b(it)Tn(ig) " ,,(if)12 "xl +b_ ) _x2 =0 (AI4)

Solving for

expression reduces to

u(iO _ lq(it)Th(iO.(it)
- 2 x _ "_x

which q!/O is identical to q(i]O,x_and b (i0 is defined asin

q(it) (i.e., ,_(0 ) in the above equation and substituting into Eq. (A12), the strain energyx2 rxm

(AI5)
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or

b (i0 =

14

(A16)

b (i0 =

12b_ it') -12/)1( iO 6b_iOLi 6b_iOLi

-121)(1ig, 12b_ `0 -6b_iOl.i-6b_")l_,i

6b[ig) l_f -61)(!ie) & 4b(2ig) _2b3(i0

6b_iO Li -6b_iO _ -21)(3ig, 41)(2iO

where

b_ie) = AfgEgGJe (Al7a)

Li(12Eglg + afgGg_ )

b (if) 4Erlg(3Eflg +AfgGglff) (Al7b)

b_iO = Eg/g (6Ee/g- Af gGglff ) (AI7c)

Li(12Eglg+ AfgGglff )

Substituting from Eq. (15) into Eq. (AI), the strain energy of the f th bolt is expressed as

K
. (g) _ 1 _(ioTk(ig)_(ig)
U x =Z__tlx o tlx

1..,
i=1

(AI8)

As mentioned previously, the presence of nuts prevents the bolt from rotating at the end points; thus, it

resembles clamped-type boundary conditions, requiring that ,_(O =0 and ¢_(_ =0 Invoking this,rxl

condition into Eq. (A18), the strain energy expression is modified as

U(()= la,(lg)T2"_x b,(lO qS(lt') + ,.+"K-2Z q(x/t)"T b (ie) q(ff) + _'.lxlJ((K-l)O T b,((K-I)O q_(K-l)O (AI9)
l' 2--

where the vectors and matrices with a prime are defined as
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q_ le)r -[-"i'A(Oxi' Ax2'(g) _x2j'_(e)] (A20a)

and

q_(K-1)O 7 { (t') Aft) ,d g) 1 (A20b)= Ax(K-1)' "-'xK' _'x(K-l)J

l-h(lO b(lO ] _.(lg)]
['ql 12 _ t'14 [

_lt,(l() h(I[) ', h(lg)[
b'(l[) -/KL2_ ___-,_22__-iy_2_4_1

]b(10 h(lg) I b(lg)/
k 14 "24 i 44 J

[b}_K-')e)

b'((X-l)O

L;U,v 
f /.,((K-i)/)

h((X-l)g) " _'Z3
"22

b2((K-1)g) [ /.,((K-I)_ e)
3 i "33

(A20c)

(A20d)

The terms on the right-hand side of Eq. (AI9) can be rearranged such that all the unknown deflection and

rotation components and the coefficients of the element stiffness matrices are assembled in large vectors

and matrices. Hence, the strain energy expression is compacted to

1 i'q(e)]T[ b_
(A21)

where

(g) ^(g) ], (A22a)_x_"(e)T={A(_) Ax2 "'" _xKj

(g)
,.,(g)T=j,_(g) ,_(g) .. ¢x(K_I)I J"_x¢ ].Wx2 Wx3 "

bl._(Ig) I .(lg) I I
l__ I_____L2_.... k.

hog) [ /..(It') -a-h(2g) rr h(2t) ,'

_'12 _"22 -_'11 ' '12

1 • 1 .. ., I
1 I 1

[ r

.... -r ] _.((K-2)t') , _.((K-2)g)_ z.((K-l)t') , z.((K-l)g)
" k_°kZ_...... LL'_2_2_.... Y_"j! ..... L_%2....

..... #...........

,, ,, ,, :
1 I I 12 i "22

(A22b)
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(O
bA¢ _=

b 7'
4

b2(2g) h(2() +bf3g)3 '-'24

I
I
I

T .....

I
I

1"---- .
I ". ",

t
i _((X-2/O

'-'23
t ..... I"
I I
I I
[ I

- r.(lg) .(2g)
v44 +/933

b(2g)
34

b3 2g)
4

b(2g) /,(30
44 + _33

i

bOO
34

b3((K-3)Q
4

b2((K-2)O + b(_ K-l)04

b2((K-1)g)
3

b((K-3) g) a_/,((K-2)g) k((K-2)g)44 "33 "34

b3((K-2)g) /.((K-2)O .a_/,((K-I)g)
4 "44 "'33

(A22c)

(A22d)

The bolt is subjected to contact forces that are assigned to the nodal points and the reaction moments due

to clamped support at the end points of the bolt•

None of the internal nodal points, where the nodal rotations are active, is subjected to external

moments. Therefore, it is appropriate to reduce the total number of unknowns by statically condensing

out the rotational components of the bolt. Because no external moments are acting on the internal nodal

n(g)
points, the first variation of the strain energy with respect to the vector nx¢ must vanish, thereby yielding

the moment equilibrium equations in matrix form as

b(g)T (g) , ,.(On(g) = 0 (A23)
A¢ "lxA _- °¢¢_x O

Solving tlx¢-(g)in the above equation and substitution into Eq (A21), after rearranging the terms, lead to

U(xO = 1 A(g)Tb(g)A(g ) (A24)
2 x x x

(0 and the matrix b(xg) is defined aswhere the vector A(f ) is identical to qxA

b(f ) = b_f_ 1 k(g)Th(e)-lh(e)
-_°A¢, "¢0 "A¢ (A25)

As mentioned previously, the stiffness properties of the bolt in the (x,z) and (y,z) planes are identical

because the bolt material is isotropic and its cross-section is circular.
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Thus, the strain energy of the bolt in the (y, z) plane can be expressed as

• (O containsin which the vector Z_y

1 A(oTh(e)A(()
U(y 0 =_-_y ,Jr _y

A(O T ",(g) ,(g) ,(O}y = lZ.Xyl LXy 2 "" l._XyK

and the matrix lay"(Q is identical to b (g)x, i.e.,

(O =b(z_ I k(oT_.(O-Ih( O
by -_uA¢ u¢_ OA¢

The total strain energy of the bolt becomes

U( 0 _ l A(g)Th(g)A(g) . 1 A(oTh(oA(O
--_,--x -x -x T_y _,y_y

or, in a more compact form,

(A26)

(A27a)

(A28b)

(A29)

0
The analytical derivation of Eq. (A30) depends on the number of plates connected with the gth holt. For

example, the analytic derivation of matrix b(f ) ,_(e)(=Uy) for bolts used in single-and double-lap joints is

obtained as

with

for a single-lap joint, and

b* -b* ]
h(O - h(O (A3 I)
--x ----y = -b* b*

b* = 12EglgGgAff (A32)

I_G_Afe + 12EcleI_ i
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b(f) • (0
=Dy =

b,'*, <l/,_
I1

_(]0 -(20
"44 + °22

Sym.

t.(lO tk,(Ig) j.(2g)_

b_t') _14 '_34 +Vl2 "

G"+b,(_o 4o +b_(_g,

/,_'*'+C' (C) ÷C'):
33 h(lg) h(20

_'44 + "22

COO
034 +b[220_h(20"_23

bOO .(20
44 + °22

b3(20
3

b(2g)
23

bog) + b(22g)44

(A33)

b(l by Eq. (A16) a double-lap joint, a connects morewith g) and _'ijh(20 defined for If bolt than 3

laminates, the analytic derivation would be too lengthy to present herein. For this case, numerical

calculation of the matrices becomes more appropriate.

APPENDIX B

The strain energy given as

can be rewritten in the form

in which

u(k) = 1 f _1(k),.(k),4a f At(k) *_(k) da
--2 J " afl" a_ "_ - J " a_ "aft "1

A (k) A (k)

U(k) 1
=2 I N(k)Tv'(k)dA- I N(k)T*_'(k) dA

A(k) A(k)

N(k) T =iN(k) N (k) N(k)_
t xx , yy , xy ,

(/,)r = {e_) e(k) _.(k), ),y ,_xy J

*8(k)T = i*_.(k) *c(k) *,;(k) }
t _xx , _yy , _xy

Substituting for the stress resultant vector, N (k) , given as

N(k) = A(k) _(k)

leads to

(Bl)

(B2)

(B3)

FINAL REPORT NAG-I-2052 PAGE 41



U(k) =--1 I2
A(k)

_(k)TA(k)_(k)dA_l f _(k)TA(k) *C(k) dA
2

A(k)

Its first variation becomes

A(k)

Utilizing the kinematic relations

Eal_(k) 1. (k) +, (k)
=-_tua, l_ "_,aJ

or (B4)

(B5)

(B6)

and invoking Eqs. (3) and (6) into Eq. (B5) result in

6U(k) = S l_vaflr"(k) _*-,(k)l_vafl] °Ua, fl(k)dA

A(k)

Before applying the divergence theorem, this expression can be rewritten as

-- ,,_ J ,fl A(k)A (k)

Noting that *N (k) = 0 and applying the divergence theorem yielda/_,p

6U(k) S llvaPr,(k)= -*N2k)B)nfl6u(k)dF- [ .,,k) e ,k)dA_vafl,fl oua
F(k) A (k )

Finally, this expression can be recast as

6u(k) =- S N(k)afl,fl6u(ak) dA + S *t(k) 6u_) dF

a(k) _(k)

L

+ S "'_)6u(k)dF+Z S *t(pk)6u(pk'dF

_.(k) g=l_.(kg)

with cr, fl=x,y and,o,r/= n,s

in which

*t(crk)_ J ^,(k) _* r_,(k)] nfl- l,,_/_ ,,_j and *t_ ) = {N(kr/) -*_(k)l,,•, prz j.w
with

t(k)_ (k) _(k)o (k)__(k),- (k) .(k),- (k) _(k),- (k)
a °uct =t x OUx -ety OUy =t (k) 6U_k) +t s OUs =tp OUp

(B7)

(B8)

(B9)

(BIO)

(BII)
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APPENDIX C

As introduced by Lekhnitskii (1968), the displacement field, u(xk) and Uy(k), and the in-plane stress

N(xk), N(yk), and N_ ) , satisfying the equilibrium equations and compatibility condition for theresultants,

k th region (laminate) can be written in terms of arbitrary complex potential functions

and

_U x ,Uy )= 2Re (Prk,qrk) (CI)

--x , y ,N(x_k =2Re /A2rk,1,_/Ark ._k) Z(rk) (C2)
Lr=l

The complex constants, Prk and qrk (r =1,2), are given by

_(k). 2 (k) _a_)/Ar kPrk = Ul l _rk + al 2 (C3)

_ _(k), + a(k)J"rk22'*",,(k)qrk - ui2 I'*rk - '*26 (C4)

in which the complex parameters /Alk and /A2kare the roots of the characteristic equation derived by

Lekhnitskii (1968),

(k) 4 ,, (k) 3 (k) (k) 2 2_(k), " (k)=0 (C5)all /Ark -zal6 /Ark +(2al2 +a66 )/Ark - u66 _rk +a22

where a/}k) , with (i, j = 1, 2, 6), are the compliance coefficients of the k th region (laminate).

For the k th region containing multiple bolt-holes, the complex potential functions, O_k) and (p_k), can

..(ke)be expressed by superposing the complex potentials, --rd_(kg)and _vr , for individual bolt holes as

L(k)

•  c6,
g=l

L(1)

_k)(@k)) _ ._(kg)[g_=lqTr _ zr(k')' "j__ Ltvr tzrF'T'(k,,(k,)]
(C7)

and

where L(k) is the number of bolt holes in the k th laminate and tt_r''(k()'[zr(k()') and q7r-(kg)'tzr(kO') , with

r=l,2, are the complex functions for the k th region containing the gth hole located at (Xc,Yc). The

complex parameters z_k) and _(kOZr are defined as
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_(kg) x(g) y(E)(k) X + flrk Y and z rZr = = + flrk

in which

bolt hole.

and

X and Y are the global coordinates and x (g) and y(g)are the coordinates associated with the

The explicit form of these complex potential functions can be expressed in the form

n=-N

n_O

(C8)

,g-,
_'_r ]-- _ (-O' (_r(ke))L,=r / r,, jn_-N

n:¢:O

(C9)

in which tZrn_(kg)are the complex unknown coefficients and _(kg) map the gth circular hole in the k th

laminate to a unit circle in the mapped plane, thus permitting Laurent series representations to

approximate the field variables. The prime denotes differentiation with respect to_ :(kg). The mapping

functions _Xr(ke)introduced by Bowie (1956) are in the form

.(k,) +__(z_kg))2_..a2(l_/.lr 2 )

_kg) Zr- (c10)
akg (1 - iflr k )

in which ak( is the radius of the g thhole in the k th region and i = _"1. The sign of the square-root term

is chosen so that x_ke)[ > 1. Inverting the mapping function provides

.(ke)
z_ke) =co ke_ __(k_) _k_)

- 'r F(kt )
_r

(Cll)

in which

r(kg) = ak( (1-iltrk) s_kg) = akg (1 +2 " ' 2 " iflrk ) (C12)

The displacement components, u(k) and U(yk) , can be rewritten in terms of real vector quantities as

L (k) 2 N /" T T_

' Z._Z.._ __a _Ux(rn) '_y(rn) j-rn (C13)
,(=1 r=! n=-N
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The functions

and

L (k) 2 N f T "r r_

[ _,(k) N(k) N_)) _ X--' X--" X--" [,z(kf) " c(ke) " _:(kf) "| a(kt')
_'x ,"y kg=lr=In=-N"' --/_ ./_ /'_ _°xx(rn) ,°yy(rn) ,L'xy(rn) ) rn

where the real vectors are given by

U';(g,'n,T :{2Re[qrk (kg)_;nJ,-2Im[qrk (kg'_*rn] }

s(k,) T:{2Rel,U2 k (kg)(O:n],_2imI_t2rk (kt)fp_n] }xx ( rn )

:_-{:Re[-(")<],-:Im 1}yy (rn)

s(ke ) T ,
xy(rn, ={2ReIflrk (kg)(fl*rn]'-2ImIflrk (k()qgrn]}

a(rkn')T ={2ReI(kg)O_rnJ,-2Im[(k')_m] }

(kg)* and ta (ke)* are defined as
"rrn

i)(kt)* [/:(kt')

with

_(kO
O)r(k_) = r(rkg) + st

Terms arising from the expansion of U (kO S(kt) _(ke)a(m)' a_(m)' and _rn for r ranging from 1

contained in the following vectors:

u(_or _Ju(k,, ) v u(,,,o r'_
a(,) - [ w(1,,) ' a(2,O

(C14)

(C15a)

(C15b)

(Cl6a)

(Cl6b)

(C 16c)

(C17)

(C18)

(C19)

(C20)

to 2 can be

(C21)
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s(kg ) T fs(ke) T s(k/) T]

_fl(n) :[ crfl(ln) ' o_fl(2n) ;

a(k_) T = _a(k_) T a(kC)Tl
[ l. , z,, j

The terms arising from the expansion of these vectors for n ranging from -N to N

vectors defined as

: [_a(-N) ' a'(-U+l) ...... or(N)

S(k_)r_ _(ke) T _(ke) r _(k_) r]

aft -- _ _fl(-N) '_crfl(-N+t) ...... otfl( N)

a(ke)r __(k_) r,a(kt) V _(ke)r]
----['(-N) (-N+I) ..... _t(N) f

with (a, fl = x, y).

stresses in Eqs. (C13) and (C14), respectively, can be rewritten as

L(k)

u(k) = Z U_)T a(ke)

(C22)

(C23)

are contained in the

(C24)

(C25)

(C26)

Thus, using Eqs. (C24)-(C25), the series expansions for displacements and resultant

E=I

L(t)
_(kg) TN(O X" a(kg)

a,8 = Z.,
C=I

with (or = x, y). These expressions can be recast as

L(k)

u(k) = Z U(kg)T a(kQ

e=i

L(i)

S (k) = ZS (k_)T a(k()

t'=l

by defining the following vectors

u(k)T f (k) .(k)l
:lUx ,Uy J

N(k)T __N(k) hi(k) N(k)_
--i"x.x ,"yy ,"xy j

(C27)

(C28)

(C29)

(c30)

FINAL REPORTNAG-1-2052 PAGE 46



1

1
Finally, these equations can be expressed in a more compact form as

u (k) = u(k) T a(k) (C31)

where

N (k) = S (k)T a (k) (C32)

V(k)T: V(k,r U(kZ)r ... U(kL<k))T

°

... T

a(k) T =
a(kl)T, a(k2)T, ..., a(kL(k))T }

APPENDIX D

The iterative scheme for solving the system of algebraic equations given in Eq. (69) begins with the initial

estimates of O(A0) and O(ff) , shown in Fig. D1, defining the contact region. These angles are measured

in the counterclockwise direction from the x (t) axis of the local coordinate system, (x (t),y(c)). The

initial estimate in most cases does not represent the true contact region, for which the radial stresses are

all compressive Orr-(k)< 0 on F (k_r) , and the fact that the start and the end points of the contact region

_(k) 0 .have zero radial stresses, ,Y_kr)(OA)=0 and Orr (tl) =0

As shown in Fig. DI, three distinct cases exist, depending on whether the radial stress near the

start angle, O(A0) , is larger or smaller than the true value of the start angle or equal to the true value, 0 A ,

of the contact region, _,(kO. The initial guess of the starting angle, O(A0) , is smaller than its true value,

0 A , if the compressive radial stresses change sign and become tensile near the start point of the contact

region, 0(A0). The initial guess of the starting angle, 0(A0), is larger than its true value, 0 A, if the
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Angle, 0

a)

Angle, 0

O9

Angle, 0

b) c)

_o

Fig. DI. The behavior of radial stress near the start point of a contact region:

(a) the start angle is too small; (b) the start angle is too large;

(c) the start angle is correct.

compressive radial stresses do not change sign and remain compressive near the start point of the contact

region. The initial estimate of the end angle, Og°) , is larger than its true value, 0 B , if the compressive

stresses change sign and become tensile near the end angle. If the compressive stresses do not change

sign, then the initial guess, O(B°) , is smaller than its true value.

During the iteration process, an initially guessed contact region defined by O(a0) and O_0) converges

to the true contact region defined by 0 A and 0 B through incrementally changing the values of the start

and end angles. The increment is forced to decrease each time the true value of the start or end point is

passed, and the direction of angle change is altered, The convergence of the iterative process is achieved

when the incremental value of the angle reaches a pre-defined value.

In order to avoid the case of radial stresses having zero values at the start or end points of the contact

region but with tensile and compressive stresses along the contact region, two auxiliary points are

considered as shown in Fig. D2. These points are located inside the contact region near the start and end

points of the contact region. In order to achieve convergence for the contact region, the radial stresses at

these two auxiliary points must be compressive.

-Jr------- _ auxiliary points

ti -tj" 0

Angle, 0 _

Fig. D2. Auxiliary points along a contact region.
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